ササキ リョウヘイ
佐々木 亮平 所属 コンピュータサイエンス学部 コンピュータサイエンス学科 職種 助教 |
|
言語種別 | 英語 |
発行・発表の年月 | 2019/09 |
形態種別 | 国際会議論文 |
査読 | 査読あり |
標題 | Multiple K-Means Clustering Based Locally Low-Rank Approach to Nonlinear Matrix Completion |
執筆形態 | 共著 |
掲載誌名 | European Signal Processing Conference |
掲載区分 | 国外 |
出版社・発行元 | IEEE |
著者・共著者 | K. Konishi, T. Shise, R. Sasaki, and T. Furukawa |
概要 | This paper deals with nonlinear matrix completion problem, which is a problem of restoring missing entries in a given matrix, where its column vectors belong to a low dimensional manifold. Assuming that a low dimensional manifold can be approximated locally as a low dimensional linear subspace, this paper proposes a new locally low-rank approach. In this approach iteratively solves low-rank matrix completion problems for submatrices generated by using the k-means clustering for several values of k and restores missing entries. Numerical examples show that the proposed algorithm achieves better performance than other algorithms. |