シャ キンカ   Jinhua She
  佘 錦華
   所属   工学部 機械工学科
   職種   教授
言語種別 英語
発行・発表の年月 2014/01
形態種別 学術論文
査読 査読あり
標題 Existence and global exponential stability of periodic solution for high-order discrete-time BAM neural networks
執筆形態 共著
掲載誌名 Neural Networks
出版社・発行元 Elsevier
巻・号・頁 50(1),pp.98-109
担当範囲 All
著者・共著者 Ancai Zhang, Jianlong Qiu, and Jinhua She
概要 This paper concerns the existence and exponential stability of periodic solution for the high-order
discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. First,
we present the criteria for the existence of periodic solution based on the continuation theorem of
coincidence degree theory and the Young's inequality, and then we give the criteria for the global
exponential stability of periodic solution by using a non-Lyapunov method. After that, we give a numerical
example that demonstrates the effectiveness of the theoretical results. The criteria presented in this paper
are easy to verify. In addition, the proposed analysis method is easy to extend to other high-order neural
networks.
DOI DOI: 110.1016/j.neunet.2013.11.005