|
イクノ ソウイチロウ
Soichiro Ikuno
生野 壮一郎 所属 コンピュータサイエンス学部 コンピュータサイエンス学科 職種 教授 |
|
| 言語種別 | 英語 |
| 発行・発表の年月 | 2021/12 |
| 形態種別 | 国際会議論文 |
| 査読 | 査読あり |
| 標題 | Motion Feature Extraction and Stylization for Character Animation using Hilbert-Huang Transform |
| 執筆形態 | 共著 |
| 掲載誌名 | Proceedings of the 2021 ACM International Conference on Intelligent Computing and its Emerging Applications |
| 掲載区分 | 国外 |
| 出版社・発行元 | ACM |
| 巻・号・頁 | pp.16-21 |
| 総ページ数 | 6 |
| 著者・共著者 | Ran Dong, Yangfei Lin, Qiong Chang, Junpei Zhong, Dongsheng Cai, and Soichiro Ikuno |
| 概要 | This paper presents novel insights to feature extraction and stylization of character motion in the instantaneous frequency domain by proposing a method using the Hilbert-Huang transform (HHT). HHT decomposes human motion capture data in the frequency domain into several pseudo monochromatic signals, so-called intrinsic mode functions (IMFs). We propose an algorithm to reconstruct these IMFs and extract motion features automatically using the Fibonacci sequence in the link-dynamical structure of the human body. Our research revealed that these reconstructed motions could be mainly divided into three parts, a primary motion and a secondary motion, corresponding to the animation principles, and a basic motion consisting of posture and position. Our method help animators edit target motions by extracting and blending the primary or secondary motions extracted from a source motion. To demonstrate results, we applied our proposed method to general motions (jumping, punching, and walking motions) to achieve different stylizations. |