アラカワ タカヒロ
  荒川 貴博
   所属   工学部 電気電子工学科
   職種   准教授
言語種別 英語
発行・発表の年月 2023/06
形態種別 学術論文
査読 査読あり
標題 Gas-Phase Biosensors (Bio-Sniffers) for Measurement of 2-Nonenal, the Causative Volatile Molecule of Human Aging-Related Body Odor
執筆形態 共著
掲載誌名 Sensors
掲載区分国外
出版社・発行元 MDPI
巻・号・頁 23(11),pp.5857
総ページ数 13
著者・共著者 Iitani, K., Mori, H., Ichikawa, K., Toma, K., Arakawa, T., Iwasaki, Y., & Mitsubayashi, K
概要 The molecule 2-nonenal is renowned as the origin of unpleasant human aging-related body odor that can potentially indicate age-related metabolic changes. Most 2-nonenal measurements rely on chromatographic analytical systems, which pose challenges in terms of daily usage and the ability to track changes in concentration over time. In this study, we have developed liquid- and gas-phase biosensors (bio-sniffers) with the aim of enabling facile and continuous measurement of trans-2-nonenal vapor. Initially, we compared two types of nicotinamide adenine dinucleotide (phosphate) [NAD(P)]-dependent enzymes that have the catalytic ability of trans-2-nonenal: alde- hyde dehydrogenase (ALDH) and enone reductase 1 (ER1). The developed sensor quantified the trans-2-nonanal concentration by measuring fluorescence (excitation: 340 nm, emission: 490 nm) emitted from NAD(P)H that was generated or consumed by ALDH or ER1. The ALDH biosensor reacted to a variety of aldehydes including trans-2-nonenal, whereas the ER1 biosensor showed high selectivity. In contrast, the ALDH bio-sniffer showed quantitative characteristics for trans-2-nonenal vapor at a concentration range of 0.4–7.5 ppm (with a theoretical limit of detection (LOD) and limit of quantification (LOQ) of 0.23 and 0.26 ppm, respectively), including a reported concentration (0.85–4.35 ppm), whereas the ER1 bio-sniffer detected only 0.4 and 0.8 ppm. Based on these findings, headspace gas of skin-wiped alcohol-absorbed cotton collected from study participants in their 20s and 50s was measured by the ALDH bio-sniffer. Consequently, age-related differences in signals were observed, suggesting the potential for measuring trans-2-nonenal vapor.
外部リンクURL https://doi.org/10.3390/s23135857