キクチ マサユキ
MASAYUKI KIKUCHI
菊池 眞之 所属 コンピュータサイエンス学部 コンピュータサイエンス学科 職種 准教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2019/09 |
形態種別 | 学術論文 |
査読 | 査読あり |
標題 | Effectiveness of Pseudo 3D Feature Learning for Spinal Segmentation by CNN with U-Net Architecture |
執筆形態 | 共著 |
掲載誌名 | Journal of Image and Graphics |
掲載区分 | 国外 |
出版社・発行元 | Journal of Image and Graphics |
巻・号・頁 | 7(3),pp.107-111 |
総ページ数 | 5 |
著者・共著者 | Naofumi Shigeta, Mikoto Kamata, Masayuki Kikuchi |
概要 | In the medical field, automatic extraction of spinal region from CT images has been desired. Among various methods for image segmentation, one of the convolutional neural network models called U-Net [1] has been shown to attain good performance with small data set size. Previous study by Kamata et al. [2] applied U-Net for spine segmentation task and achieved 82.7% accuracy for unlearned CT images. However, the method had difficulty in the precision of the 3D shape. This study attempted extraction of spine region with higher precision by adopting pseudo 3D feature learning for U-Net. |
外部リンクURL | http://www.joig.org/index.php?m=content&c=index&a=show&catid=52&id=218 |