サトウ アツシ
佐藤 淳 所属 応用生物学部 応用生物学科 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2020/01 |
形態種別 | 学術論文 |
査読 | 査読あり |
標題 | Conditional Generative Adversarial Networks to Model iPSC-Derived Cancer Stem Cells |
執筆形態 | 共著 |
掲載誌名 | Journal of Advanced Computational Intelligence and Intelligent Informatics |
掲載区分 | 国外 |
巻・号・頁 | 24(1),pp.134-141 |
総ページ数 | 8 |
著者・共著者 | Saori Aida, Hiroyuki Kameda, Sakae Nishisako, Tomonari Kasai, Atsushi Sato, and Tomoyasu Sugiyama |
概要 | he realization of effective and low-cost drug discovery is imperative to enable people to easily purchase and use medicines when necessary. This paper reports a smart system for detecting iPSC-derived cancer stem cells by using conditional generative adversarial networks. This system with artificial intelligence (AI) accepts a normal image from a microscope and transforms it into a corresponding fluorescent-marked fake image. The AI system learns 10,221 sets of paired pictures as input. Consequently, the system’s performance shows that the correlation between true fluorescent-marked images and fake fluorescent-marked images is at most 0.80. This suggests the fundamental validity and feasibility of our proposed system. Moreover, this research opens a new way for AI-based drug discovery in the process of iPSC-derived cancer stem cell detection. |
外部リンクURL | https://www.jstage.jst.go.jp/article/jaciii/24/1/24_134/_article/-char/ja |